
RESEARCH ARTICLE

High-resolution images and drone-based LiDAR reveal
striking patterns of vegetation gaps in a wooded spinifex
grassland of Western Australia
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Abstract

Context Vegetation patterns in hummock grasslands

of Australia’s arid interior can be very complex.

Additionally, the grasslands are interspersed with

variable amounts of trees and shrubs.

Objectives To better understand the spatial arrange-

ment of this vegetation structure, and in particular the

unvegetated bare-soil gaps, we analyzed the scale-

dependent patterns of gaps, trees, and shrubs.

Methods We focused on two size categories of

grassland gaps, large gaps C 4 m2 known as fairy

circles (FCs) and small gaps 1 to\ 4 m2, and on trees

and shrubs. We mapped four 200 m 9 200 m study

plots located east of the town of Newman in Western

Australia, using drone-based aerial images and

LiDAR. The RGB images were converted into binary

images and the gaps and woody plants were automat-

ically segmented. The spatial patterns of the four

vegetation components were analyzed, as well as the

shape properties of the vegetation gaps.

Results The most striking result was that small gaps

appeared consistently at about 5 m distance away

from the FCs, which are known as the most water-

depleted locations in the grassland. The FCs were also

rounder than the small gaps and this symmetry

underlines their function as an extra source of water

for the surrounding matrix vegetation. Trees and

shrubs had spatial patterns that were unrelated to FCs,

which likely results from their water uptake in deeper

sub-soil layers.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s10980-021-01358-9.
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Conclusions The consistent distance of small gaps to

FCs is further support that the Australian fairy circles

are a self-organized vegetation pattern that results

from ecohydrological feedbacks.

Keywords Australia � Fairy circles � Gap shape

complexity index � LiDAR � Triodia � UAV

Introduction

Grassland gaps in arid ecosystems are common

throughout the world. Probably the most famous

grassland gaps are the so-called fairy circles. These

fairy circles (FCs) are relatively large and round

vegetation gaps that occur in a small area of Western

Australia and also along the Namib Desert in south-

western Africa. FCs in Australia have mean diameters

of four meters and large FCs can even exceed 7 m

(Fig. 1a, Getzin et al. 2016, 2021a). In Namibia their

diameters range mostly between four and ten meters

(van Rooyen et al. 2004) with some ‘‘mega circles’’

exceeding 20 m (Getzin and Yizhaq 2019). One

important aspect that characterizes the FCs is their

unique ability to form so-called ‘‘spatially periodic’’

patterns, where the six nearest neighbors around any

focal FC have approximately the same distances to the

focal FC. Such FC distributions are a special form of a

regular pattern with an extraordinary degree of

overdispersion, and they appear so striking to the

observer because of their strictly geometric spatial

ordering (Getzin et al. 2019a).

Periodic vegetation patterns are an inherent char-

acteristic of many arid ecosystems where the spatial

periodicity results from biomass-water feedbacks and

self-organization of plants that strongly compete for

water (Deblauwe et al. 2008; Maestre et al. 2021). A

typical example from Australia are the mulga trees

that grow in banded patterns along hillslopes. The

periodic distances between the bands are caused by

interacting processes of run-off erosion and positive

feedback with vegetation growth, resulting from better

infiltrability under vegetated patches (Ludwig et al.

2005). While the individual mulga bands may not be

physically connected, it is the hydrological flow of

material that leads to functional connectivity of the

vegetation (Okin et al. 2015).

Fairy circles in Australia have been compared to

plant rings (Ross and Moles 2021) but it is important to

note that the latter type of Triodia rings strongly differ

from true FC grassland gaps which are ‘‘holes’’ in a

more or less continuous vegetation matrix (Getzin

et al. 2016, their Fig. 2). Grass rings are globally

common in arid ecosystems, for example, in North

America (Ravi et al. 2008). However, rings are local

phenomena that are mostly disordered and that lack a

spatial periodicity in the landscape-scale distribution.

Rings are therefore not directly comparable to fairy

circles, except for the fact that they are circular and

that hydrological or aeolian processes may be

involved in their formation.

Generally, FCs are not ordinary gaps such as

common termite- or ant-induced holes in the vegeta-

tion but they differ from those in several important

characteristics. For example, Namibian FCs do not

show an obvious correlation with termite or ant nests

in the gap centers (Tschinkel 2010, 2012; Ravi et al.

2017), which is a common feature of all insect-

induced vegetation gaps. In contrast to common

vegetation gaps induced by harvester termites (Wat-

son et al. 1973, Noble et al. 1989), excavations of the

Australian FCs revealed no termite causation and the

spatial properties such as the sizes and patterns of the

two types of gaps differed significantly (Getzin et al.

2019b). Another important characteristic of FCs is that

they are strongly confined to a narrow climatic

envelope. In Namibia, FCs occur only along a narrow

corridor east of the Namib Desert where mean annual

precipitation (MAP) ranges from 50 to 150 mm (van

Rooyen et al. 2004). In the Pilbara of Western

Australia, the FCs occur only in a small area east of

cFig. 1 Example of a typical round Australian fairy circle in the

plot L2 (Getzin et al. 2019b). The scale in the image is 50 cm

long (a). In the background of the FC, a Eucalypt tree can be

seen to the left. Example of a small gap in the plot L2 (b). Those

small gaps form on soft sand, as the excavations revealed.

Drone-based aerial image of the plot FC-C5 (c). The plot is

200 m 9 200 m and it contains FCs, small gaps, scattered trees,

and shrubs. Conversion of the RGB orthophoto into a binary

image with automatically delineated FCs and small gaps, using

ImageJ software (d). Drone-based LiDAR was used to map the

3D-point clouds of the woody vegetation (e). Shown here is an

example of the distribution of trees and shrubs in plot FC-C5,

where red color indicates the highest parts of the vegetation. The

inset in (e) shows the Microdrone md4-1000 with laser scanner

and base station
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the town of Newman, where MAP is 330 mm but

annual evaporation is 3200–3400 mm, hence in both

countries FCs prevail in arid systems with an aridity

index\0.2 (Getzin et al. 2016). This is in contrast to

insect-induced grassland gaps occurring over wide

climatic gradients in North America (Nicolai

et al. 2010; Dibner et al. 2015), Namibia (Turner

et al. 2006) or Australia (Watson et al. 1973; Noble

et al. 1989; Abensperg-Traun and Perry 1998) because

the active removal of vegetation by termites or ants or

the formation of a termite pavement results always in a

vegetation gap, irrespective of the climatic conditions.

For these above-mentioned reasons, it has been

suggested long ago that these special vegetation gaps

of the FCs are most likely related to strong competition

for limited resources such as soil water and nutrients

(van Rooyen et al. 2004).

For the Australian FCs, it has recently been

demonstrated with soil analyses and mathematical

modelling, as well as with drone-based assessments of

plant vitality, that these vegetation gaps result from

ecohydrological feedbacks of the Triodia basedowii

grasses that dominate the system (Getzin et al.

2016, 2021a). Driven by the region’s climatically

harsh conditions, these plants act as ‘ecosystem

engineers’ because they modify the abiotic

environment by redistributing the water resources

(Getzin et al. 2021a), which helps to better cope with

the hostile abiotic environment. After rainfall, the FCs

with their strongly impermeable clay crusts function

as an extra source of water for the surrounding matrix

vegetation and the most vital grass individuals

assemble themselves according to geometric rules

around the FCs. These self-organized grassland gaps

are therefore a prime example of an emergent

vegetation pattern where plant-competitive interac-

tions at lower levels of organization lead to higher

level structures (Newman et al. 2019). The landscape-

scale patterns of mature FCs with diameters ranging

from 2 to 7 m are best identified on remotely sensed

satellite or aerial imagery, while accurate detection of

smaller gaps requires higher resolutions, such as that

obtained from drone imagery. So far, the mature fairy

circles of Australia and their ecohydrological feed-

backs have been investigated in great detail (Getzin

et al. 2016, 2019b, 2021a) but the role and spatial

arrangement of small gaps with sizes of 1 to\ 4 m2 is

still unexplored. So far, preliminary investigations of

these relatively small gaps (Fig. 1b) revealed merely

that such immature gaps developed on soft sand

without any evidence of termite activity (Getzin et al.

2019b).

Fig. 2 The four drone-mapped 200 m 9 200 m plots are shown with RGB images (a–d) and the raw conversion into binary images

(below)
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Generally, since many processes may potentially

contribute to or affect the formation of FCs, it is

important to study such emerging patterns in as much

detail as possible. A multi-criteria assessment of such

landscape structures is therefore desirable in order to

understand the full picture of the spatial dynamics that

govern the emergence of patterns. For example, it is

not yet known whether there is a scale-dependent

relationship between the small gaps and the mature

FCs or between the woody plants and the mature FCs.

Demonstrating that such systematic relationships do or

do not exist may help to further our understanding of

the growth patterns of vegetation components, or may

rule out unlikely hypotheses about the cause of the FCs

if such spatial relationships do not exist.

Specifically, the spatial pattern of small gaps

relative to the pattern of larger FCs has never been

investigated. While the pattern of the FCs is spatially

periodic, it is so far unclear if the small gaps with a size

of only a few square meters are merely randomly

distributed in the landscape or if they follow a

statistical rule with a specific distance correlation to

the FCs. Given that the FC patterning results from

ecohydrological feedbacks (Getzin et al. 2021a), it can

be expected that new FCs or small gaps would form at

the most water-depleted locations in the matrix, which

is about half-way the distance of two nearest-neigh-

boring FCs. The mean nearest-neighbor distance

between FCs in Australia is 10 m (Getzin et al.

2016), hence the most water-depleted locations should

be, from a theoretical and mathematical point of view,

5 m away from the FC centers, where there is not

enough water to sustain the growth of vegetation.

However, this prediction has not yet been tested in the

field.

Also, we would expect that the roundness of the

gaps is greater in mature FCs while small gaps should

be less round because they have only been formed

recently, whereas the large FCs are expected to be

long-lived, stable structures (Caviedes-Voullième and

Hinz 2020; Getzin et al. 2021a). The larger FCs should

have rounder shapes because they result from isotropic

plant competition for water whereas new small gaps

are more in a dynamic stage and likely more affected

by noise (Fernandez-Oto et al. 2014). Small gaps that

are bordered by very few large hummocks are also

more affected by the shape and size of the few grass

individuals making up the gap while this effect

diminishes for large FCs. In comparison to other

geometric shapes, a circle has the smallest circumfer-

ence-to-area ratio. Since FCs are an additional water

source for the surrounding grasses, a circular arrange-

ment of plants enables each plant to maximize its per-

capita access to water. All this should result in rounder

shapes of FCs in comparison to small gaps.

In this study, high-resolution aerial images were

converted into binary images which allowed for an

automatic feature extraction of all small vegetation

gaps and FCs (Fig. 1c, d), enabling us to describe even

the most complex shapes in an objective way.

Finally, the Australian FCs are interspersed with

scattered eucalypt trees and shrubs. Such woody plants

with their deep-reaching root systems compete for

water in the deeper sub-soil layers whereas the grasses

with their shallower roots compete primarily for water

in the top-soil layer (Ward et al. 2013). This leads us to

the assumption that the emergence and pattern of the

fairy circles is unrelated to the pattern of the trees and

shrubs. However, so far, the pattern of woody plants in

a FC landscape has never been investigated for

Australia. Therefore, we used drone-based LiDAR,

enabling us to differentiate between trees and shrubs

and to characterize the structural properties of the

woody components (Fig. 1e).

Overall, we identify the following three hypotheses

as research goals of this study:

1. Given that the Australian FCs are self-organized

vegetation gaps that result from scale-dependent

competition for water, small grassland gaps with a

size of 1 to\4 m2 should occur segregated from the

larger FCs which supply the surrounding matrix

vegetation with water.

The small gaps in the matrix are thus an expression

for a shortage of water at ‘‘fixed’’ distances away from

the FCs.

2. The spatially periodic pattern of the FCs results

from symmetric competition for water.

Given that this scale-dependent competition for

water is a long-lasting process and that many individ-

ual grasses make up the circle, the shape of the FCs

should be rounder than that of the younger small gaps

in the surroundings.

3. Fairy circles result from grass competition for

water in the top-soil layer.

Given that trees and shrubs with their longer roots

compete primarily for water in the deeper sub-soil

layers, their spatial patterns should be unrelated to the

FC patterns.
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Our research is important and relevant for arid

ecosystems in a broader context because self-orga-

nized vegetation patterns are characterized by sym-

metry-breaking, hence by a uniform force that drives a

uniform system out of equilibrium to induce spatially

periodic patterns (Meron 2012). In this context, it is

important to demonstrate empirically how the strictly

geometric rules of pattern formation act on different

hierarchical levels of ecosystem organization (Okin

et al. 2015; Newman et al. 2019). This includes, for

example, not only the large fairy-circle gaps, which

are known to be stable over many decades (Tschinkel

2012), but also the small bare-soil gaps, which have

received little attention so far. In particular, it is

important to study the geometric arrangement of small

bare-soil gaps, as this pattern may reveal subordinate

levels of organization that can explain the periodic

structuring of the fairy-circle landscape.

Methods

Study area

The Australian FCs can be found east of the mining

town of Newman in north-west Western Australia

(Fig. S1). They occur within a radius of 10 km east to

south of the Ophthalmia Dam (Getzin et al.

2016, 2019b). Vegetation comprises hummock grass-

lands, tussock grasslands, sclerophyll shrublands, and

woodlands with a tussock grass understorey (Van

Vreeswyk et al. 2004). The local climate is arid with

about 330 mm mean annual precipitation (MAP) and

3200–3400 mm annual evaporation (Australian

Government Bureau of Meteorology 2018). Air tem-

peratures in the summer months December and

January can be very high with daily maxima exceeding

47 to 48 �C (Getzin et al. 2021a). Soil surface

temperatures in the upper centimeter on bare ground

in FCs can reach 75 �C, and mechanical weathering in

these harsh conditions leads to the formation of

physical clay crusts with compacted and sealed

surfaces, which largely hampers grass growth within

the FCs (Getzin et al. 2016, 2019b). This landscape

with FCs is very flat and the plains are sandy,

comprising Red Kandosols, Red Ferrosols and Leptic

Rudosols (Isbell 2002). These Triodia grasslands burn

approximately every 15–30 years, destroying the

entire grass vegetation (Levin et al. 2012; Muñoz-

Rojas et al. 2016). All FC locations are mono-

specifically dominated by the spinifex grass Triodia

basedowii E. Pritz.

We studied the vegetation in four 200 m 9 200 m

plots (Fig. S1) that have been drone-mapped and

described in detail by Getzin et al. (2021a). At the time

of the survey, the plots ‘FC-L1’, ‘FC-L2’ and ‘FC-C5’

did not burn for more than 15 years. Hence, they

represent typical climax stages of long unburnt

Triodia grasslands. The plot ‘FC-1’ had an estimated

post-fire age of about 10 years. We did not analyze the

fifth plot ‘FC-C2’ from the above study because its

post-fire age was\3 years, thus it was unsuitable to

investigate the very small gaps that may only be

visible with time in the growing matrix vegetation.

The plot FC-L1 was not as homogeneously covered

with FCs as the other three plots because the plot had

transitions to labyrinthine and irregularly shaped bare-

soil gaps. All four grassland plots contained scattered

trees and shrubs in variable densities and included

species such as Acacia aneura (commonly known as

‘mulga’), A. pruinocarpa, A. tenuissima, Hakea chor-

dophylla, Capparis spp., and various Eucalyptus

species such as E. victrix. The primary goal of this

study was to assess these trees and shrubs for their

spatial structure within the FC area and therefore

specific taxonomic mapping was not required. Based

on our fieldwork experience, we classified the vege-

tation into three general height levels: Triodia grasses

C 1 cm to\100 cm, shrubs C 100 cm to\300 cm,

trees C 300 cm.

Drone survey

We undertook a drone (unmanned aerial vehicle,

UAV) survey between the 7th and 25th of July 2017,

where we mapped the four plots with a Microdrone

md4-1000 quadcopter and an attached photo camera,

as well as a laser scanner.

We used the 24-megapixel photo camera SONY

NEX-7 and a flying altitude of 40 m above the ground

to get an image resolution of 1 cm/pixel. The

programmed flying speed was 3 m/s and 420 RGB

images were taken with an 85% forward and 70%

sideward overlap.

The Microdrone md4-1000 can carry a weight of

1 kg for a flight duration of about 25 min. Hence, we

installed a SICK LD-MRS (Multi-layer Range Scan-

ner) laser scanner to map the woody vegetation with
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drone-based LiDAR (Fig. 1e). Such laser scanners

provide accurate information on the height of vege-

tation and they outperform Structure-from-Motion

(SfM) algorithms based on 2D-photos that are com-

monly used as a low-cost alternative (Wallace et al.

2016). The scanner received simultaneously echoes

from four parallel layers and up to three returns per

pulse. The laser point rate was approximately 19500

points/s with an infrared light wavelength of 895 to

915 nm. Depending on the flying altitude, the type of

vegetation, and the speed of flying, very high point

densities can be achieved. In order to achieve a

maximum data quality, we set the flying speed to 2 m/

s, which was fast enough to stabilize the drone while

flying, but also slow enough to enable high point

densities. The three plots FC-L1, FC-L2 and FC-1

were mapped at an altitude of 30 m above ground, and

for testing higher point densities, the plot FC-C5 was

flown at 20 m above ground. The resultant point

densities ranged between 114 and 133 points/m2 for

the plots FC-L1, FC-L2 and FC-1, and 185 points/m2

for the plot FC-C5. However, all point clouds were

randomly thinned to 100 points/m2. Given that this is

still a very high point density far beyond generated

point clouds typically produced by conventional

airborne laser scanning, this standardized density

enabled a direct LiDAR comparison of all four plots.

Preparation of drone data

The RGB photos were stitched together into geo-

referenced orthophotos (Fig. 2a–d) using OneButton

software (version 5.1.0.57, www.icaros.us). Gap

shapes and the distribution of bare soil in these hum-

mock grasslands are usually very complex. Since the

goal of this study was to analyze specifically the very

small vegetation gaps with a size of only 1 to\4 m2,

only an automatic feature extraction enabled us to

digitize and quantify such gaps in an objective man-

ner. For this reason, we converted the RGB photos into

binary images with a constant threshold grey level of

200 (Fig. 2) and tested several image resolutions (1,

10, 20, 50 cm/pixel) for finding the most reasonable

gap extractions. We then used ImageJ software (ver-

sion 1.52a, https://imagej.nih.gov/ij/) and the mode

‘‘Analyze Particles’’ to segment the individual gaps,

deleting all unconnected or single pixels that did not

jointly form a minimal size of 1 m2 based on the tested

image resolution. It turned out that an image resolution

of 20 cm/pixel represented the individual shape and

distribution of small gaps and FCs in the best way

(Fig. 1c, d). Finer resolutions resulted into shapes too

complex for analyzing and more connected gaps,

while a coarser resolution resulted in a loss of infor-

mation. With the mode ‘‘Analyze Particles’’ we also

obtained information on the x, y-coordinates of the gap

centers, as well as the area (A), perimeter (P), and

shape properties (e.g. roundness and shape complex-

ity) of each gap.

Roundness of a gap is calculated as Roundness ¼
4A
pD2 where D is the length of the major axis. Roundness

is the inverse of the Aspect Ratio (AR = major axis

length of approximate ellipse / minor axis length of

approximate ellipse). For a perfectly round gap, the

major and minor axes are of equal lengths and

roundness equals 1, but the more the major axis

increases relative to the minor axis, the more declines

the roundness towards 0. Based on the area and

perimeter, we also calculated the gap shape complex-

ity index: GSCI ¼ P
ffiffiffiffiffiffi

4pA
p , which is the ratio of a gap’s

perimeter to the perimeter of a circular gap of the same

area (Koukoulas & Blackburn 2004). A value of 1.0

describes a perfect circle and increasing values

indicate increasing shape complexity. For instance,

values of 1.4 and 2.6 have 40% and 160% complexity,

respectively (Getzin et al. 2012). This GSCI is

independent of the gap’s area, hence small and large

squares have the same index value of 1.128.

To differentiate between FCs and small gaps, we

used a threshold area of 4 m2. This roughly approx-

imates a diameter of 2 m used in previous studies as a

lower threshold size to digitize FCs (Getzin et al.

2015, 2021a). In order to allow for potential shape

complexities, especially of small gaps, we defined the

threshold in terms of the number of pixels. Given an

image resolution of 20 cm/pixel, small gaps classified

as 1 to\ 4 m2 could thus have a minimal number 25

pixels, while smallest FCs could have a minimal

number of 400 pixels.

The LiDAR data (Fig. 1e) were processed in R-

software (R Development Core Team 2019) using the

package ‘‘lidr’’ following the process described in

Roussel et al. (2020). Additionally, the packages

‘‘rgeos’’, ‘‘sf’’ and ‘‘raster’’ were used for management

of the data. At first the raw data were thinned to 100

points/m2 which reduces the original amount of data

but also local variations in the point-cloud density due
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to the drone movement. The ground points classified

by the drone system were used for the height

normalization of the data. We used a spatial interpo-

lation method based on a k-nearest neighbor algorithm

(‘‘knnidw’’) and inverse-distance weighting to deter-

mine the height of each point relative to the ground

points (Roussel et al. 2020). Values with negative

height values below the ground surface were then

removed as noise points. From that thinned and

normalized point cloud we then built a canopy-height

model (CHM) based on a 0.25 m raster which

describes the absolute height of the vegetation inde-

pendent of potential variation in topography (Khos-

ravipour et al. 2014; Getzin et al. 2017). The crowns of

trees and shrubs were segmented using the algorithm

‘‘silva2016’’ derived from Silva et al. (2016). This

method is based on a Voronoi tessellation approach to

isolate each individual crown. For the identification of

trees and shrubs we used a circular moving window

with a diameter of 5 m to determine local maxima and

minima. Shrubs were classified as such with local

minima of 100 cm, while trees had local minima of

300 cm. Hence shrubs ranged in height between

100 cm to\300 cm.

Because the position of the local maxima was not

centered in the segmented crowns, the center of mass

was calculated for each shapefile of shrub and tree

crown. This was done with the function ‘‘gCentroid’’

from the package ‘‘rgeos’’. These centers of mass were

then analyzed with spatial statistics to determine the

patterns of the woody vegetation.

Spatial statistical analysis

We used spatial statistical techniques to analyze the

patterns of FCs, small gaps, trees, and shrubs. In this

regard, the main interest was to investigate if the

individual patterns and if pairs of patterns showed

correlations. For univariate analyses of these four

individual types of patterns, we used the pair-corre-

lation function (short: g11-function) and the null model

complete spatial randomness (CSR) which is based on

a homogeneous Poisson process. The neighborhood-

density function g11(r) describes significant deviation

from a random pattern such as clustering or regularity

at a given radius r, using a standardized density. It is

the expected density of points at a given distance r of

an arbitrary point, divided by the intensity k of the

pattern (Stoyan and Stoyan 1994). Under CSR,

g11(r) = 1, aggregation is indicated by g11(r) [ 1,

while regularity has values of g11(r)\1.

Additionally, we were particularly interested in

assessing the spatial distribution of small gaps around

FCs because it is assumed that both types of gaps

emerge due to competition for water. Hence, there

should be a consistent dependency of small gaps on the

larger FCs which function as an extra source of water

for the surrounding matrix vegetation (Getzin et al.

2021a). In order to analyze such patterns with two

types of points we used the bivariate pair-correlation

function g12(r) which is the expected density of points

of pattern 2 at distance r of an arbitrary point of pattern

1, divided by the intensity k2 of pattern 2. The FCs

were treated as pattern 1 and the small gaps with a size

of 1 to\ 4 m2 were treated as pattern 2. The toroidal

shift null model was used for the bivariate analysis

because it preserves the properties of the individual

patterns and randomizes the relative locations between

two patterns (Wiegand and Moloney 2004). The

spatial correlation functions g11(r) and g12(r) were

tested for significant deviations from the CSR null

model using the fifth lowest and fifth highest values of

199 Monte Carlo simulations for constructing approx-

imately 95% simulation envelopes (Baddeley et al.

2014).

Finally, we applied bivariate nearest-neighbor

analyses to investigate the distribution of the nearest-

neighbor distances of small gaps around the FCs. This

measure allows for a straightforward interpretation of

the distances of small gaps to their nearest FC. All

spatial analyses were done in R-software (version

4.0.0) using the packages ‘‘spatstat’’ (Baddeley and

Turner 2005).

Results

Structural attributes

The number of FCs in the 200 m 9 200 m study plots

ranged between 305 and 477, and the total area

coverage between 8.2 and 16.2% (Table 1). Thereby,

the youngest plot (FC-1) had the greatest cover with

FCs and the largest FC sizes. The mean roundness of

the FCs ranged from 0.63 in FC-L1 to 0.74 in FC-C5,

and the gap shape complexity index, GSCI, from 1.34

in FC-C5 to 1.63 in FC-1.
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Generally, the number of small gaps was more

variable than the number of FCs, with numbers

ranging between 417 and 1134. The total area

coverage of small gaps was low, ranging between

1.7 and 5.2%. Compared with the coverage of FCs in

the plots FC-L1, FC-L2, FC-C5, and FC-1 the

coverage of small gaps was 2.3, 2.9, 4.7, and 4.8

times lower, respectively, indicating overall a strong

variability among the plots. The mean roundness of

the small gaps was lower than that of the FCs and

ranged between 0.58 in FC-1 and 0.61 in FC-C5. The

mean GSCI of small gaps ranged from 1.13 in FC-C5

to 1.17 in FC-1. In all four plots, the roundness and

GSCI of the FCs were significantly greater than those

of the small gaps at p \ 0.001 (two-tailed t-tests;

Fig. 3).

Tree numbers were very variable in the four plots.

Only 26 trees were identified in the relatively young

plot FC-1, while 132 trees were found in the plot FC-

C5 (Table 1). Given that plot age after destructive fire

refers to the succession of grasses but not to the fire-

resistant trees, unsurprisingly, the mean crown areas

were quite similar in all four plots and ranged from

10.9 to 12.5 m2. With 42.98 m2 the largest crown area

was found in FC-C5, and this was also the tallest found

tree with a height of 6.67 m. The total area coverage

with tree crowns was very low in the plots, ranging

between 0.7 and 3.6%. The mean tree height ranged

between 3.9 and 4.6 m.

The number of shrubs was much higher than that of

the trees, ranging between 91 and 259 individuals.

Mean crown areas of shrubs were low, ranging from

1.3 to 2.1 m2. The total area coverage with shrubs was

even lower than that of the trees. It ranged between 0.3

and 1.2%.

Table 1 The structural attributes of the vegetation in the four study plots

FC-L1 FC-L2 FC-C5 FC-1

Plot properties from RGB imagery

# of FCs 477 373 305 361

Min/mean/max area FCs (m2) 4.00/9.98/48.68 4.00/12.84/33.88 4.08/10.76/23.36 4.00/17.98/138.84

Total area coverage FCs (%) 11.90 11.98 8.20 16.23

Min/mean/max roundness FCs 0.20/0.63/0.99 0.25/0.70/0.98 0.27/0.74/0.99 0.23/0.69/0.98

Min/mean/max GSCI FCs 1.07/1.49/3.00 1.08/1.46/2.39 1.07/1.34/2.27 1.09/1.63/3.95

# of small gaps 1134 956 417 783

Min/mean/max area small gaps (m2) 1.00/1.84/3.96 1.00/1.74/3.96 1.00/1.67/3.96 1.00/1.73/3.96

Total area coverage small gaps (%) 5.21 4.16 1.74 3.38

Min/mean/max roundness small gaps 0.21/0.59/1.00 0.23/0.59/1.00 0.22/0.61/0.99 0.24/0.58/1.00

Min/mean/max GSCI small gaps 1.00/1.16/1.78 1.00/1.15/1.70 1.00/1.13/1.79 1.00/1.17/1.71

Plot properties from LiDAR

# of trees 38 60 132 26

Min/mean/max area trees (m2) 1.23/12.54/24.53 0.65/11.51/26.10 1.66/10.86/42.98 2.85/11.26/28.34

Total area coverage of trees (%) 1.19 1.73 3.58 0.73

Min/mean/max height trees (m) 3.09/3.94/5.18 3.05/4.08/5.91 3.00/4.09/6.67 3.23/4.55/6.03

# of shrubs 259 135 197 91

Min/mean/max area shrubs (m2) 0.21/1.88/7.89 0.25/1.79/10.01 0.23/2.11/8.55 0.26/1.30/9.05

Total area coverage of shrubs (%) 1.22 0.60 1.04 0.30

Min/mean/max height shrubs (m) 1.00/1.68/2.95 1.01/1.74/2.93 1.00/1.95/2.96 1.02/1.81/2.97

The plot properties from drone-based RGB imagery describe the size and shape characteristics of the FCs and small gaps. The plot

properties derived from drone-based LiDAR show the structural attributes of the woody vegetation such as trees and shrubs

FC fairy circle, GSCI gap shape complexity index
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Spatial statistical results

For the plot FC-L1, which had vegetation patterns with

transitions from FCs to labyrinthine gap patterns,

univariate analysis of the FCs with the g11-function did

not show a spatially periodic ordering but merely a

regular pattern (Fig. 4a). For the plots FC-L2, FC-C5,

and FC-1 the g11-functions of the FCs showed a

spatially periodic behavior with significant fluctua-

tions around the null-model envelopes (Fig. 4b–d).

The small vegetation gaps in the plots showed a

consistent pattern with strong regularity at the smallest

scales and a positive peak shortly at the scales

thereafter in all plots (Fig. 4e–h). At larger scales,

the g11-functions deviated in the plots FC-L2, FC-C5,

and FC-1 from the homogeneous Poisson process of

the CSR null model, indicating a heterogeneous

distribution with varying densities. This was in

contrast to the FCs, which were large-scale homoge-

neously distributed (i.e. inside the CSR null-model

envelopes at large scales r, Fig. 4a–d).

The bivariate g12-functions showed a consistent

pattern for all four plots. At smallest neighborhood

scales, no small gaps were found around the FCs,

which is expected because otherwise the FCs and

small gaps could not be separate entities. But consis-

tently at around 5 m distance away from the FC

centers, small gaps strongly clustered and the g12-

function showed its highest positive peak (Fig. 4i–l).

Hence, irrespective of the density and large-scale

spatial distribution of small gaps within a study plot,

their spatial relation to the FCs was always the same.

Also, the bivariate nearest-neighbor distributions of

small gaps around the FCs reveal the consistent

distances of small gaps towards nearby FCs (Fig. 5).

The mean nearest-neighbor distances of small gaps

towards FCs in the plots FC-L1, FC-L2, FC-C5, and

FC-1 were 4.9 m, 5.1 m, 5.4 m, and 5.0 m,

respectively.

Finally, the pattern analysis of trees and shrubs

showed a strong mismatch with the univariate pattern

of the FCs and even those of small gaps. Unlike those

two types of grassland gaps, the trees showed for

smallest scales a tendency to clustering, which how-

ever was only significant for the plot FC-1 (Fig. 6a–d).

The shrubs showed primarily a tendency to random

patterns at small scales and only the shrubs in plot FC-

L1 had a strongly regular small-scale pattern with

g11(r) = 0 (Fig. 6e–h).

Fig. 3 Shape properties of the vegetation gaps. The roundness

(a) and gap shape complexity (b) of the FCs were in all four

plots significantly greater than for the small gaps. The black

horizontal lines indicate the median. Significance was assessed

via two-tailed t-tests and p\0.001
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Discussion

With this study, we aimed at quantifying the vegeta-

tion structure in a wooded spinifex grassland of

Western Australia, using high-resolution images and

drone-based LiDAR. The primary focus of the study

was on the spatial properties of the grassland gaps and

how small, potentially newly forming gaps appear

relative to the FCs which dominate this arid ecosys-

tem. Our approach of employing an automatic

Fig. 4 Spatial patterns of FCs (red dots) and small gaps (blue

dots) in the 200 m 9 200 m study plots. Univariate pair-

correlation functions for the FCs (a–d). The same univariate

analyses for the small gaps (e–h). Bivariate pair-correlation

functions for the FCs and small gaps to assess the scale-

dependent density of small gaps around FCs (i–l). In univariate

analyses, the pattern is regular and aggregated at scale r if the

red line of g11(r) is below the lower and above the upper gray

simulation envelopes, respectively. In bivariate analyses, small

gaps are segregated from and aggregating around FCs at scale

r if the blue line of g12(r) is below the lower and above the upper

gray simulation envelopes, respectively. Approximately 95%

simulation envelopes were constructed using the 5th-lowest and

5th-highest value of 199 Monte Carlo simulations of the CSR

null model
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segmentation of gaps enabled us to assess in an

objective manner even the most complex shapes of

vegetation structure. This applies also to the drone-

based LiDAR analysis of the woody plant

components.

Automatic segmentation of FCs and small gaps

The automatic segmentation of FCs, using conversion

into binary images and analysis with ImageJ software,

resulted in structural attributes and spatial patterns that

strongly agreed with manual segmentation work of the

same FC plots. For example, previous manual FC

segmentation of the 200 m 9 200 m plot FC-C5

resulted in 312 FCs or equivalently in 78 FCs per

hectare (Getzin et al. 2016). Here we found 305 FCs

for the same plot. Also, the largest FCs in the plots FC-

L1, FC-L2, and FC-C5 were 48.7, 33.9, and 23.4 m2 in

area respectively, equaling previously reported max-

imal diameters of six to above seven meters (Getzin

et al. 2016). There was only the one plot FC-1, where

the five largest segmented FCs appeared too large with

sizes of 50.8, 53.1, 61.4, 62.2, and 138.8 m2. This plot

had an estimated post-fire age of about 10 years and

hence it was the youngest of all. The grass vegetation

was thus not yet in the full climax stage as in the other

three older plots, as can be seen on the large

fragmented bare-soil areas in FC-1, especially in the

southern part of the plot (Fig. 2d). This lower density

and biomass of the perennial grass species Triodia

basedowii in FC-1 is also indicated by the highest total

area coverage of FCs, which was with 16.2%, about

twice as high as in the FC-C5 plot. Additionally, the

mean gap shape complexity index and the maximal

GSCI of FCs were found in the plot FC-1 to be highest,

which results from more fragmented gaps due to lower

grass density at the circular periphery of the FC. The

original plot name ‘‘C5’’ denotes that this site was

dominated by ‘‘purely gapped FC patterns’’and thus

circles, while the ‘‘L’’ in L1 and L2 indicates that these

plots of the same climax stage were ‘‘partly inter-

spersed with labyrinthine vegetation patterns’’ (cf.

Getzin et al. 2016). It is therefore not surprising that

the roundness of the FCs in FC-C5 was highest and the

shape complexity was lowest (Table 1).

Despite slight effects from labyrinthine vegetation

patterns in the plot FC-L2 or from larger bare-soil

coverage due to younger vegetation in FC-1, the pair-

correlation or g-functions showed a spatially periodic

ordering of FCs for all plots, except for FC-L1 which

had strong labyrinthine effects. Usually, it is necessary

to analyze larger observation windows such as

500 m 9 500 m to reveal spatial periodicity of the

FCs (Getzin et al. 2016, 2019a). Therefore, the second

negative peak of the g-function is not as strongly

deviating from the lower simulation envelope of the

null model, as would be obtained with larger plot sizes

(Getzin et al. 2019a,b). However, given that the FC

features and the centers of mass were automatically

extracted and that FC shapes were in part strongly

fragmented such as in FC-1, the resultant g-functions

reveal sufficiently well the typical, spatially periodic

ordering of the FCs. Only in the plot FC-L1, the FCs

did not show spatially periodic ordering because of the

additional effects from labyrinthine vegetation-gap

transitions.

Fig. 5 Bivariate nearest-neighbor (NN) distributions of the small gaps, relative to the nearest fairy circles (FCs). The red vertical lines

show the mean nearest-neighbor distances of small gaps to the FCs
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Ecological interpretation of spatial patterns

Neither the small gaps with sizes of 1 to\ 4 m2, nor

the woody vegetation structure have so far been

analyzed as individual patterns for the Triodia grass-

lands with FCs. For this reason, we formulated the

three hypotheses as listed in the Introduction.

The first hypothesis suggests that small gaps should

occur segregated from the larger FCs which supply the

surrounding matrix vegetation with water. This is

because the Australian FCs are self-organized vege-

tation gaps that result from scale-dependent competi-

tion for water (Getzin et al. 2016, 2021a). Hence, also

the small gaps in the matrix should be an expression

for a shortage of water at ‘‘fixed’’ distances away from

the FCs. Our study confirms this hypothesis. Indeed,

the strong consistency and geometric ordering of the

distribution of small gaps, relative to the position of

FCs, is the most striking result of our study. Never-

theless, the number of small gaps per plot was very

variable, ranging between 417 and 1134. Also, the

density of small gaps across the plots was variable, as

is visible from the maps of the plots and from the g11-

functions that tended to deviate from a homogeneous

Poisson process for larger scales, most noticeably for

the plots FC-C5 and FC-1 (Fig. 4 g,h). While these

study plots are generally very flat and homogeneous,

the variability in the density of small gaps could be

attributed to differences in micro-topography or in soil

texture, that we generally classify as environmental

noise. Moreover, the aggregations of trees and shrubs

in certain areas of the plots, such as particularly in FC-

C5 (Fig. 2c), may lower the likelihood to find small

gaps in these patches. Another reason for variable

densities of small gaps across the plots may be patchy

fire activity where certain areas in a plot have burnt

Fig. 6 Spatial patterns of trees (red dots) and shrubs (blue dots) in the 200 m 9 200 m study plots. Univariate pair-correlation

functions for the trees (a–d). The same univariate analyses for the shrubs (e–h). For details see Fig. 4
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less strongly than other areas, e.g. due to changing

wind conditions (Haydon et al. 2000). This becomes

visible in the plot FC-1 where varying levels of

greenness indicate spatial fluctuations in past fire

activity (Fig. 2d).

Nevertheless, despite the environmental noise, the

bivariate g12-functions and also the bivariate nearest-

neighbor distributions were nearly identical. More

precisely, the consistent mean nearest-neighbor dis-

tance of about 5 m indicates that the small gaps are not

just a random event in space, but they have a

systematic relation to the FCs. Given that the FCs

function as an extra source of water for the surround-

ing grass vegetation and that the mean nearest-

neighbor distance between the FCs is about 10 m

(Getzin et al. 2016), the dominant appearance of the

small gaps at 5 m radius is precisely the distance

which is furthest away from the FCs.

These findings demonstrate that the emergence of

bare-soil gaps follows rules of periodically patterned

dryland vegetation where the wavelength of the bare-

soil distances results from negative long-range feed-

backs under a given aridity stress (Meron 2012).

Related gapped patterns resulting from plant self-

organization are also known from Niger (Barbier et al.

2008) or Sudan (Deblauwe et al. 2011), and banded

patterns have been documented for Mexico (Deblauwe

et al. 2011) or the Australian Outback (Ludwig et al.

2005, Okin et al. 2015).

Our new results also support our second hypothesis.

If the spatially periodic pattern of the FCs results from

symmetric competition for water in this flat and

homogeneous landscape, then this competition should

be equally strong across the plots. Consequently, the

long-lived FCs should be rounder than the small new

gaps. This was confirmed for all four research plots.

Additionally, the highest mean roundness was found

in the most typical FC plot FC-C5, while the younger

10-year-old plot (FC-1) had less round FCs. This

demonstrates that over time, plants arrange themselves

in an increasingly round formation around the FC

water source which is a more efficient pattern of

benefiting from the overland water flow from the gap

centers towards the FC edges. The function of the FCs

as an additional source of water for the surrounding

grasses becomes thereby increasingly symmetrical.

The fact that the GSCI, a shape index that is

independent of the gap area, was higher for the FCs

than for the small gaps indicates that these round large

circles are not fully closed but there are always

openings where water can flow through towards the

matrix, thereby enabling a functional connectivity of

resource flow within the arid landscape (Okin et al.

2015). This openness which leads to a certain

fragmentation and also to partly labyrinthine transi-

tions has been interpreted as a dynamic adaption of the

grasses to the large-scale distribution of water in the

plots, which may even result in partial revegetation of

FCs with some individual grass hummocks (Getzin

et al. 2019b). Such changes of FC sizes and forms are

particularly known from Namibia, where the annual

plants react more dynamically to the stochastic rainfall

cycles (Zelnik et al. 2015).

Finally, we hypothesized that trees and shrubs with

their longer roots should compete primarily for water

in the deeper sub-soil layers, while grasses compete

for water in the top-soil layer (Ward et al. 2013). Their

spatial patterns should therefore be unrelated to the FC

patterns. This was also confirmed by our LiDAR

mapping of trees and shrubs and subsequent spatial

analysis of the patterns. For small scales, the trees

showed a tendency to clustering and the shrubs a

tendency to random patterns. Such patterns strongly

differ from the small-scale ordering of the FCs, hence

a hypothetical link between the death of trees and

resultant formation of a FC (whatever the mechanism

shall be in that case) can be rejected. The clustering of

the trees is indicative for facilitative processes

(Holmgren et al. 1997) whereby shading induced by

the crowns enables the survival of several species in

the immediate neighborhood (Fig. 1c, e, S2). These

spatial results are very similar to Namibia where the

pattern of Euphorbia shrubs was predominantly

clustered or random, and therefore the shrubs cannot

explain the periodic regularity of the Namibian FCs

(Getzin et al. 2021b). Our analysis of the vegetation

structure also reveals that the total area of tree and

shrub coverage in the plots was very low and that

especially the number of trees was very variable with

the plot FC-C5 having five times more trees than FC-1.

From these numbers we conclude that the woody

components only have a random effect on the grass-

land system with regard to the spatially periodic

pattern of fairy circles. Thus, woody plants are not a

key driver of the vegetation gap structure in this

Australian FC landscape.
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Conclusions

The main goal of the study was to investigate the

pattern characteristics of small gaps and larger FCs.

We were able to show that small gaps consistently

formed at those locations which were furthest away

from their nearest-neighboring FCs. Although math-

ematically this was to be somewhat expected (Meron

2012), empirically this is a remarkable result given the

environmental noise and the high spatial variability of

the small gaps in these four study areas. The consis-

tency in the patterning of small gaps, relative to the

neighboring FCs, is an expression for the lack of water

at those locations that are about five meters away from

the FCs, which function as an extra source of water for

the matrix vegetation. Also, we could finally demon-

strate that the trees and shrubs with their different

spatial patterns, as well as with their low area coverage

and variable numbers, are only random components in

this grassland ecosystem that seem to not affect the

dynamics and the formation of the periodic FC

patterns. In support of our previous studies, here we

highlight that the Australian FCs are a prime example

of vegetation self-organization which is driven by

ecohydrological feedbacks and plant competition for

water.
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